Effects of the trinucleotide preceding the self-cleavage site on eggplant latent viroid hammerheads: differences in co- and post-transcriptional self-cleavage may explain the lack of trinucleotide AUC in most natural hammerheads
نویسندگان
چکیده
Eggplant latent viroid (ELVd) can form stable hammerhead structures in its (+) and (-) strands. These ribozymes have the longest helices I reported in natural hammerheads, with that of the ELVd (+) hammerhead being particularly stable (5/7 bp are G-C). Moreover, the trinucleotide preceding the self-cleavage site of this hammerhead is AUA, which together with GUA also found in some natural hammerheads, deviate from the GUC present in most natural hammerheads including the ELVd (-) hammerhead. When the AUA trinucleotide preceding the self-cleavage site of the ELVd (+) hammerhead was substituted by GUA and GUC, as well as by AUC (essentially absent in natural hammerheads), the values of the self-cleavage rate constants at low magnesium of the purified hammerheads were: ELVd-(+)-AUC approximately ELVd-(+)-GUC>ELVd-(+)-GUA> ELVd-(+)-AUA. However, the ELVd-(+)-AUC hammerhead was the catalytically less efficient during in vitro transcription, most likely because of the transient adoption of catalytically-inactive metastable structures. These results suggest that natural hammerheads have been evolutionary selected to function co-transcriptionally, and provide a model explaining the lack of trinucleotide AUC preceding the self-cleavage site of most natural hammerheads. Comparisons with other natural hammerheads showed that the ELVd-(+)-GUC and ELVd-(+)-AUC hammerheads are the catalytically most active in a post-transcriptional context with low magnesium.
منابع مشابه
Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity.
Natural hammerhead ribozymes are mostly found in some viroid and viroid-like RNAs and catalyze their cis cleavage during replication. Hammerheads have been manipulated to act in trans and assumed to have a similar catalytic behavior in this artificial context. However, we show here that two natural cis-acting hammerheads self-cleave much faster than trans-acting derivatives and other reported a...
متن کاملTrans-cleaving hammerhead ribozymes with tertiary stabilizing motifs: in vitro and in vivo activity against a structured viroid RNA
Trans-cleaving hammerheads with discontinuous or extended stem I and with tertiary stabilizing motifs (TSMs) have been tested previously against short RNA substrates in vitro at low Mg(2+) concentration. However, the potential of these ribozymes for targeting longer and structured RNAs in vitro and in vivo has not been examined. Here, we report the in vitro cleavage of short RNAs and of a 464-n...
متن کاملAn extra nucleotide in the consensus catalytic core of a viroid hammerhead ribozyme: implications for the design of more efficient ribozymes.
Hammerhead ribozymes catalyze self-cleavage of oligomeric RNAs generated in replication of certain viroid and viroid-like RNAs. Previous studies have defined a catalytic core conserved in most natural hammerheads, but it is still unknown why some present deviations from the consensus. We have addressed this issue in chrysanthemum chlorotic mottle viroid (CChMVd), whose (+) hammerhead has an ext...
متن کاملStructure–function analysis of the ribozymes of chrysanthemum chlorotic mottle viroid: a loop–loop interaction motif conserved in most natural hammerheads
Loop-loop tertiary interactions play a key role in the folding and catalytic activity of natural hammerhead ribozymes. Using a combination of NMR spectroscopy, site-directed mutagenesis and kinetic and infectivity analyses, we have examined the structure and function of loops 1 and 2 of the (+) and (-) hammerheads of chrysanthemum chlorotic mottle viroid RNA. In both hammerheads, loop 1 is a he...
متن کاملThe RNA of both polarities of the peach latent mosaic viroid self-cleaves in vitro solely by single hammerhead structures.
Hammerhead self-cleavage of dimeric, monomeric, truncated and mutated transcripts derived from both polarities of the peach latent mosaic viroid (PLMVd) were characterized. In contrast to some results previously published for a very close sequence variant (see ref. 1), these RNAs exhibit a virtually identical self-cleavage during transcription and after purification. By self-cleavage of dimeric...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Nucleic Acids Research
دوره 34 شماره
صفحات -
تاریخ انتشار 2006